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COMPUTING THE GRAZING ANGLE OF SPECULAR REFLECTION

INTRODUCTION |

In this report we give three methods,.for computing the grazing angle of specular reflection. The
first was developed by Fishback [1,2] in 1943 and refined somewhat by Blake [3] in 1980, and B gives
an approximation to the grazir.g angle. The second is an iterative method, whose derivation is easy and
provides for the computation of the grazing angle to any degree of accuracy specified. The third
method shows that there is a closed form explicit expression for the grazing angle. This in turn also
allows for a computation to an arbitrary degree of accuracy. A FORTRAN program of the second
method is included in Appendix B.

GENERAL REMARKS

The geometry of the spherical-earth problem and definitions of various angles and distances are
given in Fig. 1.

The problem of computing the grazing angle of specular reflection is that of computing ¢ in Fig.
1, i.e., finding § an angle between the tangent line, / to the circle and AR where ¢ is also the angle
between /and TR.
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Fig. 1 — Geometry of spherical-earth specular reflection

Manuscript submitted May 20, 1982.
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MILLER AND VEGH

r,
We assume that ¢ = (¢, + @,); /,, hy, and r, are given. Define k, = ———, i =, 2.

r. + h
METHOD ONE

In method one. let

s=r.é,

4

pi= %[r,(hl + hy) + 1o
and
q= s;in"[Zp'3 res(hy — h')l'
Then when h; and h, are very much less than r,, Fishback approximates ¢, by
L, _ P le
¢, 2 [ . sin 13 ]

Finally, the grazing angle ¢ is given by
¥ = tan"'(cor ¢, — X, csc ¢).

(1)
)

)

4)

(5)

The error in the approximation for ¢, (and consequently for ¢) is not generally known. How-

ever, if hy = hy, then ¢, = 1/2¢ and Eq. (5) provides the exact result for the grazing angle.

METHOD TWO

Method two uses an iterative procedure for computing the grazing angle to any degree of accu-

racy.

First, applying the law of sines to triangles OAR and ORT, we obtain
@1 + ¢ = cos™! (ky cos ¢)
and
@2+ ¢ = cos™' (k; cos ).

Adding the equations (and recalling that ¢ = ¢, + ¢,) we have,
v =g

where,
g(y) = %[cos"(k, cos ) + cos™! (k, cos @) — ¢].

If we choose ¢ arbitrarily and define
Yiri=8Wp), i=0,1,2, ...
then by the results of Appendix A,
lim ¢,

i—~ o

exists and is the unique solution of Eq. (8), i.e., (11) is the grazing angle.

(6)

¢)

(8)

9)

(10)

1)
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Approximations to the grazing angle are given by the terms of the sequence ¢, ¢y, ..., with suc-
cessive terms providing more accurate approximations. In practice, when the relative difference of suc-
cessive terms of this sequence differ in absolute value by no more than a predetermined constant, we
obtain the grazing angle to our required degree of accuracy. A FORTRAN program implementing
method two is given in Appendix B.

To obtain a rapid convergence for method two, we might use method one to obtain the initial
value, ¢o. In addition, method two may be useful in real-time computation of the grazing angle, since
an angle once computed may be used as the initial value for an update computation.

METHOD THREE
The third method produces, in principle, an explicit expression for the grazing angle.

Let U = exp(i¢) and Z = exp(2iy).

Then replacing U and Z in Eq. (8), we obtain the following quartic (see Appendix C for deriva-
tion):

aZ* +BZ+ CZ*+BZ +a =0, (12)
where,
A = U - kik,,
a= UA,
B = ki + k} ~ 2kik, U,
and

C= 2Re[p - UZ].

Since Eq. (12) is a quartic, the roots can be exhibited explicitly using the classical method of Fer-
rari and Cardan [4]. At least one of these roots lies on the unit circle. Let Z, designate any of those
roots on the unit circle. Then

v = % cos~! [Re (Z.)}, a3)

and that unique value of . that satisfies Eq. (8) is the grazing angle.

Rather than use the method of Ferrari and Cardan to find the four roots of Eq. (12), it is easier
and more efficient to solve the quartic numerically om a computer using a polynomial root finder rou-
tine.

CONCLUSION

Three methods for computing the grazing angle of specular reflection are given. The first pro-
vides an approximation where the error is not known. Methods two and three will provide computa-
tions good to any degree of accuracy. Method two, an iterative procedure, may be especially useful in
real time computation.
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Appendix A
PROOF OF CONVERGENCE TO THE GRAZING ANGLE

Let X be an arbitrary set, 4 a metric on X, and fa contraction mapping of X to itself. (fis called
a contraction mapping if there is a positive constant ¥k < 1 such that

d(f(x), f(»)) € kd(xy) forall x, y in X).

The following result may be found in [Al].

THEOREM: Every contraction mapping, f, on a complete metric space has a unique fixed point,
i.e., there is a unique x in X suck ihat f(x) = x Furthermore, for an arbitrary x, in X, the sequence
given by x,,; = f(x,), n =0, 1, 2 ... converges to x.

As a special case, let X be the reals and for x,y in X let d(x,y) = |x — y|. Then (X,d) is a com-
plete metric space.

Now let f be a differentiable function defined on X and suppose furthermore that there is a con-
stant k, 0 < k < 1 such that |f"(x)| < kfor all xin X. Then fis a contraction mapping. This may be
seen as follows. Let x and y be real numbers, x < y. By the mean value theorem there is a number ¢,
x € £ < ysuch that

fx) = £0) = (x = p)S(§).
Hence,
I£G) = £ = |x = yllr@ < &k Ix - pl.
These results may be summarized in the following.

COROLLARY: Let R be the reals, k a constant 0 < k < 1, and f a differentiable function on R
such that |[/'(x)| € kfor all xin R. Then there is a unique real number a such that

a= f(a).
Moreover, if xo is an arbitrary real number and x4 = f(x,), 7 = 0,1,2, ..., then

lim x, = a.

R0

With respect to Method 2, we have given the differentiable function
g(x) = %lcos"(k; cos x) + cos~!(k; cos x) — ¢l.

Differentiating, we have

k, sin x + k, sin x
Ji—kfcosix fT—kjcosix

28'(x) =

1 — cos? x 1 — cos? x
- k _— k —————— |
* ‘V 1 - k cos’ x 2 1 — k# cos? x

___._,,____.._,...‘_-._.\‘
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Recalling that {
|

r’
. - < ]. j -],
k; "+ h i=1,2

we have :
1 —cosix 1 — cos? x E
280l € k — + k —_—_— P

128001 < Ky 1 — k{ cos? x 2\'/l—k,zcoszx ,

€ k) + ky <2,

or ]
ky + k N
o)l €« =5+ < 1.
Hence, by the Corollary, there is a unique number a such that i %
a=g(a). ‘

Moreover, if xq is arbitrary and x,,; = g{(x,), n =0, 1, 2, .., then .
lim x, = a. ’ 4

n—so0 i
REFERENCE b
P
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[g] [aEe N oo Ne Ne Nale e Ne e Nole Ne e lalie Na e Nie Ny

]

Appendix B
A FORTRAN PROGRAM OF METHOD TWO

SAYRCF LISTING ASC FAST FORTRAN COMDPILER RELEASE FTIFYN529,P294/R(

20

10

1t

STATH®ENT CP QPTIONS = (WyX) DATE = 05706/82¢(82,126)

SHRRAUTINE GRATECHLH2 s THETALRELPNRTD

THIS RAOUTINF COMPUTES THE GRAZING ANGLE PH] FOR SPHFRICAL
FAQTH SPECULAR REFLECTTIAN,

H1= ANTENNA HEIGHT,

H2= TARGET HEIGHT,

0f= FARTH EFFECTYVF R8NDIUS OR EARTH RADTUS,

THFTA TS CENTRAL ANGLF [N RADIANS,

OHI WUST BE INITIALIZED IN CALLING ROUTINE: PHI .NF. 0.

PHT= GRAZING ANGLE OUTPUT [N RADTANS,

RELAYIVE ERROR IN OHT TS 10s=-R, AUT CAN 8F NECREASFN Av CHANGING
VALUF OF TAL IN DATA STATENENT,

TNOUTS AND ONTPUTS BRF IN OEAL&B8REALS4 CAN RE USEN AY RFRAVING
TSOLTCIT STATEMENTY AND ANJUSTING TOL,

Hly H2e REe THETA ARE INPUTS. UNITS FOR W}, M2, RE NUST BRE
CONSTSTENT,

IMDLICIT REAL®B(A-H,A-1)

NATA TAL/1.0-87

PK1=RE/(H]+RE)
PK2=0E/(H24RE)

A=DARCASCRKLIV*NARCOS(RY 2)-THETA
[F( A .GEI 0000 .‘"D. a .LE. loD“s ) GO"’G 11

205002 CDARCOSCRAKIANCASC(PHIY YNARCOS(RX2¢DCAS(PHTII-THETA)

RIST=(G-PHEI ) 7PH]I
oTST=088SC(RTST)Y

IFCRYST.LE. TOL ) GOVO 10
oHT=6

Gov0 20

ONT=6

RETUGN

PHT=0.N0
RETUON
€N




Appendix C
DERIVATION OF THE QUARTIC

Beginning with Eq. (8), we have
cos (Y + @) = kikycos? y — 1 — kf cos?y f1— k# cos? ¢ .
Squaring, we obtain
(1 — kf cos? y)(1 — k} cos? ¢) = lkik, cos® ¢ — cos(2y + @))?,

or

1 — (k# + k#) cos? ¢ = cos?(2y + @) ~ 2k k; cos? ¢ cos(2y + ¢). «cn
Let U = exp (i¢) and Z = exp (i2y),
so that
cos § = %(Z +Z+2),
and

cos 2y +¢) = —;—[Uz + UZ1. (c3)

Multiplying both sides of Eq. (C1) by 4U2Z? and substituting Eq. (C2) and Eq. (C3) into Eq.
(C1) we have

4022 - YUk + k$NZP + 222+ 2)
- (U'Z*+ 20222 + 1) — Ukky(Z2 + 2Z + DU2Z2 + D).
Then grouping the terms in powers of Z gives
UPAZ* + UBZ® + U(2Re (8 — UA)) Z* + UBZ + U4 = 0.
Now dividing by U? gives Eq. (12).




